Skin and Soft Tissue Infections for the Internist

Sandra B. Nelson, M.D.
Massachusetts General Hospital
Harvard Medical School
June 7, 2017
No Disclosures
Skin and Soft Tissue Infections (SSTIs) Learning Objectives

• Review the optimal management of purulent and non-purulent cellulitis
• Understand the differential diagnosis of cellulitis
• Learn the clinical findings suggestive of necrotizing skin and soft tissue infections
• Understand when and how to evaluate diabetic foot ulcers for infection
Practice Guidelines for the Diagnosis and Management of Skin and Soft Tissue Infections: 2014 Update by the Infectious Diseases Society of America

Dennis L. Stevens,1 Alan L. Bisno,2 Henry F. Chambers,3 E. Patchen Dellinger,4 Ellie J. C. Goldstein,5 Sherwood L. Gorbach,6 Jan V. Hirschmann,7 Sheldon L. Kaplan,8 Jose G. Montoya,9 and James C. Wade10

1Division of Infectious Diseases, Department of Veterans Affairs, Boise, Idaho; 2Medical Service, Miami Veterans Affairs Health Care System, Florida; 3San Francisco General Hospital, University of California; 4Division of General Surgery, University of Washington, Seattle; 5University of California, Los Angeles, School of Medicine, and R. M. Alden Research Laboratory, Santa Monica, California; 6Department of Community Health, Tufts University, Boston, Massachusetts; 7Medical Service, Puget Sound Veterans Affairs Medical Center, Seattle, Washington; 8Department of Pediatrics, Baylor College of Medicine, Houston, Texas; 9Department of Medicine, Stanford University, California; and 10Geisinger Health System, Geisinger Cancer Institute, Danville, Pennsylvania

Purulent Skin and Soft Tissue Infections
Cutaneous Abscesses

- Pus within deeper dermis and subcutaneous tissues
 - Surrounding cellulitis may be significant

- Microbiology
 - Monomicrobial *Staph aureus* including CA-MRSA
 - Polymicrobial (regional skin flora)

- Mainstay of therapy: incision and drainage (I&D)
 - Adequacy of drainage; loculation of adhesions
 - Cure rates with I&D alone high (70-85%)
 - Gram stain and culture recommended

- Imaging may be useful in certain circumstances

- Growing body of data supports adjunctive antimicrobial therapy

Evidence from Randomized Controlled Trials (RCTs)

- Two large RCTs, >2000 patients
- All patients underwent I&D (45-50% MRSA)
- Trimethoprim-sulfamethoxazole (TMP/SMX) vs placebo
 - Greater likelihood of abscess cure with TMP/SMX
 - Lower recurrence, need for hospitalization, need for surgery, spread within household with TMP/SMX
- TMP/SMX vs clindamycin vs placebo
 - Both clinda and TMP/SMX better than placebo for abscess cure
 - Fewer recurrences with clindamycin but less well tolerated

Daum et al. Abstract 1684. IDWeek 2016; New Orleans
Antibiotic Treatment for Purulent SSTIs

<table>
<thead>
<tr>
<th>Mild-moderate infection</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>1-2 DS BID</td>
</tr>
<tr>
<td>Doxycycline or Minocycline</td>
<td>100 mg PO BID</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>300 – 450 mg PO TID-QID</td>
</tr>
<tr>
<td>Severe infection</td>
<td>Dose</td>
</tr>
<tr>
<td>Linezolid</td>
<td>600 mg PO/IV BID</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>15-20 mg/kg IV q8-12°</td>
</tr>
</tbody>
</table>

- Culture is recommended to guide therapy
- Dosing and duration not well studied
CA-MRSA: Prevention of Recurrence

• 25-50% of patients with CA-MRSA have recurrences

• Traditionally recurrences attributed to autoinoculation
 – However nasal colonization not always present
 – Other sites (rectal, inguinal, axillary, oropharyngeal) may be more important

• Increasing emphasis on reacquisition as risk for recurrence
 – From household or other contacts
 – From fomites in the environment
CA-MRSA: Prevention of Recurrence

• Decolonization studies have been disappointing
 – Decolonization of entire household may be more effective than decolonizing the patient alone

• Consider decolonization if recurrence persists or evidence of transmission among household members
 – 2% nasal mupirocin twice daily 5-10 days
 – 4% topical chlorhexidine for 5-14 days or dilute bleach bath (¼ cup per ¼ tub) twice weekly for 3 months
 – Oral antibiotics generally not recommended

• Role of environmental decontamination unknown
 – Household colonization a predictor of recurrence

Liu et al. Clin Infect Dis 2011; 52: 1
Nonpurulent SSTIs

Cellulitis

Infection of the reticular dermis and subcutaneous fat

<table>
<thead>
<tr>
<th>ANATOMY</th>
<th>SYNDROME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidermis</td>
<td>Erysipelas</td>
</tr>
<tr>
<td></td>
<td>Impetigo</td>
</tr>
<tr>
<td></td>
<td>Folliculitis</td>
</tr>
<tr>
<td></td>
<td>Ecthyma</td>
</tr>
<tr>
<td></td>
<td>Furunculosis</td>
</tr>
<tr>
<td></td>
<td>Carbunculosis</td>
</tr>
<tr>
<td>Dermis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cellulitis</td>
</tr>
<tr>
<td></td>
<td>Necrotizing fasciitis</td>
</tr>
<tr>
<td>Superficial fascia</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous tissue</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous fat, nerves, arteries, veins</td>
<td>Myonecrosis (clostridial and non-clostridial)</td>
</tr>
<tr>
<td>Deep fascia</td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td></td>
</tr>
</tbody>
</table>
Empiric therapy of nonpurulent cellulitis

• Mild:
 – Typical cellulitis without systemic signs of infection
 – Initial oral therapy appropriate

• Moderate:
 – As in mild infection, but with systemic signs of infection
 – Initial IV therapy with transition to PO when systemic symptoms resolve and cellulitis recedes

• Severe:
 – Progressive skin changes, hemodynamic instability, organ system dysfunction, immunocompromise
 – Broad IV empiric therapy and consideration for surgery

Nonpurulent Cellulitis in the era of CA-MRSA

- Treatment of nonpurulent cellulitis is empiric
 - Blood cultures positive < 5%
 - Skin biopsy low yield
- Most noncultureable cellulitis is due to pyogenic streptococci (70-75%)
- β-lactam therapy remains optimal with high cure rates
 - Inpatient and outpatient clinical studies
- MRSA should be considered if:
 - Penetrating trauma, illicit drug use, prior MRSA, and in severe infection

Bruun et al. Open Forum Infect Dis 2016; 63:1034
Mild-Moderate Nonpurulent Cellulitis: IDSA

<table>
<thead>
<tr>
<th>Oral Antibiotic</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin VK</td>
<td>250-500 mg PO QID</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>500 mg PO QID</td>
</tr>
<tr>
<td>Dicloxacillin</td>
<td>500 mg PO QID</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>300-450 mg PO QID</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intravenous Antibiotic</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>2-4 million units IV q4-6°</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>1 gram IV q24°</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>1 gram IV q8°</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>600 mg IV q8°</td>
</tr>
</tbody>
</table>

Gram-Negative Cellulitis

- **Host Risk Factors:**
 - Diabetes, peripheral vascular disease, chronic liver disease, pre-existing ulceration, immunocompromise

- **Relevant Exposures:**
 - Saltwater or freshwater, animal bites

- **Organisms:**
 - *E. coli, Klebsiella, Campylobacter, Vibrio, Aeromonas, Pasteurella*

- **Empiric coverage for Gram-negative organisms recommended for:**
 - Severe cellulitis including septic physiology
 - Appropriate epidemiologic risk factors
Vibrio species

- Found in shellfish
- Seasonal (summer months)
- Comorbidities common (liver disease)
- Cutaneous injury with saltwater exposure
- Ingestion of raw oysters (septicemia)
- Clinically: hemorrhagic bullae, rapid necrosis and ulceration, gangrene
- Treatment: doxycycline + ceftriaxone
- Mortality high (17-53% for vulnificus species)

Haq. Am J Gastroenterol 2005;100:1195
Prevention of Cellulitis

• Risk of recurrence 16-30%
 – Cellulitis leads to impaired lymphatic function
 – Impaired lymphatic function predisposes to cellulitis

• Address Modifiable Risk Factors
 – Treat stasis / lymphedema
 – Treat underlying skin disease
 • intertrigo
 – Optimize diabetes control
 – Assess vasculature
 – Wound care

Oh et al. J Infect 2014;69:26
Prevention of Cellulitis:
Antibiotic Prophylaxis

• Antibiotic prophylaxis reduces the risk of recurrent cellulitis
 – Risk ratio 0.46
 – Daily oral or monthly IM penicillin
 • Alternative: erythromycin
 – Benefit only accrues while on antibiotics

• Unanswered Questions
 – When to start prophylaxis
 – Optimal antibiotic dosing and duration
 – Strategies if penicillin prophylaxis fails and in penicillin allergy

• IDSA: consider 3-4 annual episodes

Oh et al. J Infect 2014;69:26
Diabetic Foot Infections
Infection in Diabetic Foot Ulcer

- Not all diabetic ulcerations are infected
- Infection remains a clinical diagnosis
 - Purulence, erythema, warmth, tenderness, induration
- Fever and leukocytosis are often absent
- Neuropathy and ischemia can both mask and mimic infection
- All ulcers are colonized with bacteria
 - Presence of bacteria does not imply infection
 - No evidence that antimicrobial treatment of noninfected ulcers facilitates wound healing or prevents infection
Management of Diabetic Foot Infections (DFI)

• Assess the severity of infection
• Determine the bacterial etiology
 – Culture-derived therapy leads to improved outcomes
• Assess the need for surgical debridement
• Consider additional investigation for osteomyelitis
• Initiate antibiotic therapy
• Attend to risk factors
DFI: Severity of Infection

- **Mild**
 - cellulitis/erythema extends ≤ 2 cm around the ulcer
 - Limited to skin and superficial soft tissues

- **Moderate**
 - Cellulitis > 2 cm around the ulcer
 - Lymphangitic streaking
 - Extension below superficial fascia (muscle, tendon, joint, bone)

- **Severe**
 - With systemic toxicity or metabolic instability

Diagnosis of Osteomyelitis

• 50-60% of serious diabetic foot infections are complicated by osteomyelitis

• Presence of osteomyelitis can inform:
 – need for surgical debridement
 – route and duration of antibiotic therapy
 – Increased risk of limb amputation

• Consider evaluation for osteomyelitis if:
 – Severe infection
 – Longstanding (>30 days) or large (>2 cm) wounds
 – Recurrent infection around ulcer

Osteomyelitis Diagnosis: Pearls

• Gold standard: Bone culture > histopathology
• Probe to bone test (if done properly) can rule in osteomyelitis in high risk patients, rule out in low risk
 – sensitivity 0.87; specificity 0.83; PPV 0.91; NPV 0.84
• ESR >70 is useful but insufficiently sensitive
• Serial radiography has not been well studied but is likely to be useful in chronic wounds and milder infections
• Bone scan has poor specificity (0.28)
• MRI is the most accurate radiographic test in the evaluation of osteomyelitis (sensitivity 0.90; specificity 0.79)

Weiner J Foot Ankle Surg 2011;50:197
Lam Clin Infect Dis 2016;63:944
DFI: Antibiotic Therapy

• Culture-directed antibiotic therapy leads to improved outcomes
 – Culture by biopsy or curettage after debridement
 – Reduced likelihood of later amputation
• Empiric coverage for sensitive *Staph aureus* and pyogenic streptococci in all diabetic foot infections
• Consider risk factors for MRSA
 – prior antibiotic exposure, previous hospitalization, wound duration, prior MRSA infections, local MRSA prevalence
• Consider risk factors for *Pseudomonas aeruginosa*
 – warm climates, water exposure

Senneville. Diabetes Care 2008;31:637
DFI: Role of Surgery

• Role and type of surgery not systematically defined
 – Principle: Antibiotics and host immune cells do not reach devascularized tissues
 – Surgery increases likelihood of cure but may lead to important biomechanical changes
 – Retrospective data demonstrates many patients can be cured without surgery (antibiotics for 12 weeks)
 – Those who fail antibiotic therapy may require higher level amputation

• Surgery generally accepted for:
 – Abscess, extensive bone or synovial involvement, gangrene, necrotizing soft tissue infection
Necrotizing Fasciitis

- Necrosis of deep and/or superficial fascia, along with deeper dermis, subcutaneous tissues and muscle
 - Microvascular thrombosis leads to ischemia
- Characterized by clinical urgency and high mortality
 - A “can’t miss” diagnosis
Necrotizing Fasciitis

- **Necrotizing Fasciitis Type 1 (2/3 of cases)**
 - Polymicrobial: gram positives, gram negatives, anaerobes
 - Host risk factors common: diabetes, peripheral vascular disease, illicit drug use
 - Setting: Trauma, abdominal injury, surgery;
 - Perineal infection (Fournier’s)

- **Necrotizing Fasciitis Type 2 (1/3 of cases)**
 - Monomicrobial: GAS > Groups B, C, G streptococcus > *Staph aureus*; consider also Vibrio and Aeromonas species
 - Often a normal host
 - Minor trauma may predispose
 - Limbs predominate
Necrotizing Fasciitis: Clinical Clues

- Woody induration and pain of subcutaneous tissue beyond area of skin involvement
- Pain and toxicity out of proportion to local findings
- Rapid extension of skin changes: progressive discoloration, ecchymoses and bullae, frank gangrene
- Rapid progression despite antimicrobial therapy
- Anesthesia
- Systemic toxicity
- Multiple laboratory derangements: rise in CPK, creatinine, leukocytosis, thrombocytopenia, acidosis
- Diagnosis confirmed only by surgical exploration
Necrotizing Fasciitis

Case Records of the Massachusetts General Hospital. NEJM 2009;360:281
Necrotizing Fasciitis: Management

• Surgical Debridement
 – Source control
 – Early surgery increases survival (by up to ninefold)
 – Early surgical reassessment at 24-36 hours and as needed thereafter

• Antimicrobial Therapy
 – Polymicrobial: broad spectrum against gram-positives, gram-negatives, anaerobes; clindamycin preferred
 – Group A Streptococcus (*pyogenes*): Penicillin plus Clindamycin
 – Duration of therapy: 10-14 days

• Intravenous immunoglobulin if associated with toxic shock syndrome (GAS)

Clostridial Myonecrosis (Gas Gangrene)

- Necrotizing Myositis
- Clostridium inoculated into anaerobic environment
 - Traumatic (*Clostridium perfringens*)
 - Bacteremic (*Clostridium septicum*)
 - Usually occult GI malignancy
 - Toxin production leads to cascade of ischemia and necrosis
- Clinical: rapidly progressive pain and swelling
 - Bullae may develop, +/- crepitus; sepsis
- High mortality (up to 80%)
- Rx: penicillin/clindamycin; amputation / disarticulation
Cellulitis that doesn’t improve…

- 50 year old man with a neuropathic diabetic foot ulcer
 - 5 days of right foot swelling and fever
Common causes of Pseudocellulitis:

- 28-33% of patients admitted with cellulitis misdiagnosed
- Pseudocellulitis causes:
 - Stasis dermatitis (most common misdiagnosis)
 - Inflammatory (panniculitis, connective tissue disorders)
 - Malignancy (carcinoma erysipeloïdes, leukemia cutis, Paget’s of breast)
 - Neutrophilic dermatoses (e.g. Sweet syndrome)
 - Contact dermatitis
 - Radiation dermatitis
 - Metabolic (e.g. gout)
 - Drug reactions
 - Insect bites

Raff and Kroshinsky. JAMA 2016;316:325
Which of these is cellulitis?

- Erythema migrans
- Cellulitis
- Hematoma
- Calciphylaxis
- Stasis Dermatitis
- Deep vein thrombosis

Raff and Kroshinsky. JAMA 2016; 316:325
Clues to Pseudocellulitis

- Gradual onset of symptoms
- Pruritus
- Bilateral lower extremity involvement
- Lack of temperature change between extremities
- Frequent recurrences after discharge
- Failure to resolve with beta-lactam therapy
- Measures of inflammation not useful
 - Leukocytosis, fever, and inflammatory markers
- “Diagnostic” trial off antibiotics
Take Home Points

- Management of soft tissue infections hinges on presence of purulence and clinical assessment of severity.
- For non-purulent cellulitis, beta-lactam therapy is optimal.
- For purulent cellulitis, antibiotics are now recommended for abscess treatment including empiric MRSA coverage.
- Culture to guide therapy whenever possible.
 - CA-MRSA, diabetic foot infections.
- Consider and recognize signs of necrotizing soft tissue infection.
- Consider non-infectious explanations when cellulitis does recur or does not resolve.